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1. General considerations

We focus our attention on the “curl” type Maxwell equationsin the frequency domain:
VxE=-jwB Q)
VxH=J+ jowD (2
where standard symbols have been used: E(x) is the electric field, B(x) the magnetic flux density,
H(x) the magnetic field, D(x) the electric displacement, J(x) the current density, and x is the spatial
coordinate.
To close the problem, the “div” type equations must be added, together with suitable constitutive
relations, and boundary conditions, e.g. related to external sources (currents or charges). We assume
to deal with linear materials, although this assumption is not strictly necessary, as we will discussin
the following, so that:
D =¢(X)E
B = ()H ®)
J=0(X)E

Now, we introduce some reference quantities E, B, H, D, J, L for the electromagnetic fields and for
the spatial coordinate x, so that:

Xx=L¢

E(x) = E &)

B(x) =Bb(g) (4)
H(x) = H h(c)

D(x) =D d(®)

J() =)

The reference quantities are chosen so that the non-dimensional quantities €, e, b, h, d, j are of
order 1. This can be achieved by choosing as reference quantities the root mean square values of the
related electromagnetic quantity, and supposing that the electromagnetic fields cannot be very
different from such mean values. The length L will be atypical length of the system considered. Of
course, it may be necessary to subdivide the original solution domain in sub-domains over which
the electromagnetic quantities are not dramatically varying. What we are going to say will be then
valid for one of such sub-domains.

We notice immediately that, due to (3), the quantities D, J, H depend on E, B, since for instance:

d= gnorm(g) €
D=¢«E ®)

where g IS a (constant) reference value for the electric permittivity such that the normalized value
€norm = €l€re 1S OF Order 1. One possible choice could be g = g (Vacuum permittivity), so that enorm

D=¢(X)E = {
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= g (relative permittivity), if ¢ is of order 1. Notice that in fact it is not necessary that the
constitutive relation is linear; what we requireisthat it is possible to define g that relates D and E,

such that d is of order 1 when eis of order 1.
Similarly, we have:

b:ﬂnorm(g) h
B:ﬂ(X)H {B:lurefH

jzo—norm(‘g) €
J=c(X)E = {J oL E

Rewriting (1) in view of (4) we have:

Vgxe:—waLb
E

We define:

C=

+ Eref Href

(6)

(7)

(8)

(9)

i.e. c is the speed of electromagnetic waves in the material under consideration, tem IS the time
needed to electromagnetic waves to travel the typical length L, o is linked to the squared ratio of

magnetic and electric energies:

1 2 |B|2 dv
B 1 \/vL|B| WV - lres

a:CE_\/S 7, 1 2 - 1 2
ref Href \/.[/|E| dv ‘[/*gref |E| dv
Vv 2

With these definitions, (8) becomes
Vexe=-joreab
Using similar arguments on (2) we have:
Voxh="2jsjw>Ld
H H
that becomes, using (5)-(7):
E. . E
V(:Xh: L tres Oret EJ"‘ Jo L g &g Ed

Now, we introduce two well-known characteristic electromagnetic times:

_ 2
Tm = Hres Orer L

_ Eref

O ref

(10)

(11)

(12)

(13)

(14)
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The time 1. is the electric charge diffusion time, i.e. the characteristic time with which the unpaired
electric charge decays in a conductor. The time tr, is the current density diffusion time, i.e. the
characteristic time with which the current density (and hence the magnetic field) penetrates in a
conductor.

Itiseasily seen that it results:

Tezm =Tm Te (15)
and that
T T (16)
L firg O ©= ==
Tem Te
so that (12) becomes:
17a
Vgxhzr—mijJrja)remid (173
Tem & a
or
(17b)

voxh="em Lo, Ld
Te @ a

In the end, the equations to be considered are (11) and (17) (aor b).

We want to answer to the following question: “Which are the equations to be solved in the low
frequency limit?’, where “low frequency” means obviously:

O Ty <<1 (18a)
We can quantify the “much smaller” in (18a), deciding a threshold value k<1 such that (18a) means
in fact:

O Tem <K (18Db)

A possible choice could be, for instance, k= 0.1.

The answer about the equations to be solved in the low frequency limit is not trivial, because the
term wten appears together with other terms like o and the other electromagnetic times. Moreover,
the term o in general varies with frequency; its behaviour depends also on the particular geometry
of the region under study. We have three possibilities, corresponding to the fact that the order of
magnitude of o can vary so that one of thetermsin which it is present is of order 1:

1
Casel: a~= 1 (192)
@ Tem
Case2: a~wryy (19b)
Case3iq ~—m = fem (19¢)
Tem Te

where’~" stands for “of the order of”. To check the occurrence of one of such cases, it is sufficient
to examine a in the limit otem — O, i.€. in the static limit. In case 1, we have that the energy related
to the electric field goes to zero, that means that current flows in perfect conductors. In case 2, the
energy related to the magnetic field goes to zero, that means that no current is present, that is the
electric field is present in some perfect insulators. In case 3 no perfect materials are present; thisis
evidently the most realistic situation. In this last case a. can well be much greater or lower than 1,
depending on the various situations; what we are saying is that the order of magnitude of o does not
scale with frequency. We concentrate on the latter case.
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However, we must further distinguish three possibilities, that are depicted schematically in the two
figures. Notice that tem is always in between 1. and 1, thanksto (15).

CASEA:i<<—<<i = i<ki, i<ki
Te Tem Tm Te Tem Tem z.I'T]
Admissible ®
1
LN ] I
: : >
1 1 1
Te Tem Tm
CASEB:i<<—<<i = i<ki, i<ki
Tm Tem Te 7’-I"I'] Tem Tem Te
Admissible ®
1
LN ] I
: : >
1 1 1
Tm Tem Te
casec: L~ Lt 1
Tm Tem Te
Admissible ®

v
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Let usrecall the equations to be solved:

Vexe=-joreab (20)
21
voxh="m L oo, Ld (1)
Te O (4
where, thanksto (19c):
OO Ty O T, (22)
and
O Ten— RO Tg (23)
CASEA

In case A, it results, from (19c), that a<<1; this means that the energy of the electric field is
dominant over the energy of the magnetic field. Moreover, we have:

O Ty < Ko 7oy < k2 (24)
We decide to neglect the terms of order k?, so that the right hand side of (39) is negligible:
V. xex= 0 (25)

We can distinguish various different possibilities.
= “Relatively high frequencies’, i.e. o ~ 1
Te
In this case also the second term in the right hand side of (21) is of order 1, so that the equations to
be solved are:
V x E = 0 (26)
VxH=J+jwD
that are the ElectroQuasi Static equations (EQS). If an equivalent circuit is looked for, evidently in
this case we will obtain a number of capacitors and resistors.

= “Extremely low frequencies’, i.e. o ~ k? 1 (note the k)

Te
In this case we have:
0Te~ k2 (27)
so that, neglecting k%, we have:
Ve xh= T;emlj (28)
Te O
and the equations to be solved are:
VxE=0 (29)
{V xH=1J

that are the equations of the Quasi Sationary Conduction (QSC).
If an equivalent circuit is looked for, evidently in this case we will obtain a number of resistors
alone.
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= “Low frequencies’,i.e. = ki
Te

In this case we have:

0t~ k (30)
This situation is borderline. Indeed, if we decide to neglect also terms of the order of k, then we
have QSC again; if we retain such terms we have EQS again.

CASEB

In case B, it results, from (19c), that a>>1; this means that the energy of the magnetic field is
dominant over the energy of the electric field. Moreover, we have:

0 To <K@ Ty < k? (31)
and hence, neglecting terms of order k%, (21) becomes:
32
V. xh=Ten 1 32
Te O

In other words, the displacement current is negligible.

Hence, we can distinguish various different possibilities.

= “Relatively high frequencies’, i.e. @ zi

Tm
In this case the right hand side of (20) is of order 1, so that the equations to be solved are:
VxH=J

that are the MagnetoQuas Satic equations (MQS).
If an equivalent circuit is looked for, evidently in this case we will obtain a number of inductors and
resistors.

= “Extremely low frequencies’, i.e. o ~ k® = (note the k)

Tm

In this case we have:

ot,~ k? (34)
so that, neglecting k?, we have from (20):

V. xe=0 (35)
so that the limiting equations are:

VxE=0 (36)

{V xH=1J

that are the equations of the Quasi Sationary Conduction (QSC).
If an equivalent circuit islooked for, evidently in this case we will obtain a number of resistors.

= “Low frequencies’, i.e. o ki

Tm
In this case we have:



elettrotecnica- appunti gratis ingegneria - www.riccardogalletti.com/appunti_gratis/

0Ty~ K (37)
This situation is borderline. Indeed, if we decide to neglect also terms of the order of k, then we
have QSC again; if we retain such terms we have MQS again.

CASE C

In case C, it results, from (19c), that a~1; this means that the energy of the magnetic field is of the
same order of magnitude of the energy of the electric field. Moreover, we have:

OTeg O Ty O Ty, (38)
i.e. the right hand side of (20) and the second term of the right hand side of (21) are of the same
order.
We have two possibilities (remember (18)):

= “Extremely low frequencies’, i.e. o ~ k? = (note the k)

Tm
In this case we have:
0Ty 20T~ K2 (39)
and hence the two terms are both negligible, and the situation is QSC.
= “Low frequencies’,i.e. o ki
Tm
In this case we have:
OTe*OT,~K (40)

If we decide to neglect aso terms of the order of k, then we have QSC again. Conversely, if we
retain such terms we have:
VxE=-jwB (41)
VxH=J+jwD
that are the full Maxwell equations, but always in the low frequency limit (18). This implies that
propagation may be still negligible, so that we can call this situation as ElectroMagnetic Quasi
Satic (EMQS).
If an equivalent circuit is looked for, evidently in this case we will obtain a number of capacitors,
inductors and resistors.
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2. An example of application

We consider a test case depicted in Fig. 1: a linear material with uniform o, 1 and & between two
perfectly conducting plane electrodes, fed with a sinusoidal voltage generator \7g with angular

frequency o at one end. A one-port element is connected at the other end.

Exlz,t)

—_—
/ Hylz,) 2

Y

(o) {b)
Fig. 1. Thetest case (from [1]).

Ignoring fringing effects, the electromagnetic fields are as follows:
E=E(2)i,,D=D(2)i,,d=3(2)i, (42)
H=H(2i,,B=B(2)i,
where E(z) and H (2) are suitable phasors depending on the spatial coordinate z. The time domain
behaviour of the various quantities can be recovered as, for instance, E(z,t) = Im(E(z))ej‘"t .

The equations to be solved become:

o[ =H— (43a)

—=—joB

& (43b)

L,
dz
with the following constitutive equations :

D=¢E
BouH (44
J=cE

The boundary conditions are:
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E(z=-) =—§g (453)

E(z=0) =-\7;e (45b)

220 I_We (45¢)

(2= 1) g (45d)
w

where Vs, le are the voltage and the current at the end of the plate, and Vy and |4 are the voltage and
the current at the generator. Assuming a sinusoidal voltage generator and that at the end an open
circuit is connected, then Vg is known and 1e=0, while Ve and |4 are to be determined.

The solution of the “full” equations (43a) can be done as follows. Due to the symmetry of the
electromagnetic field, a voltage between the plates and a current flowing into the plates can be
defined at each z coordinate as follows:

V(2) =-aE(2) (463)
[(2)=H@)w (460)
Using (46) and combining (43) and (44) we obtain the following equations:
av . - (47a)
— =—jolLl
dz
di _ B (47b)
—=—(G+ joo®
dz
where
G- c_W | _m (48)
a a w

These are the standard transmission line equations, to be solved with the following boundary
conditions:

V()= \7g (49a)
_ (49Db)
1(0)=0
With standard manipulations we get:
Y2 _ 50
(3122\2/ — jowL(+ joo®™ =0 (50)
and hence
V =V e ¥ +V e (51a)
|_ — i(\ze—jﬂﬂ _\zeiﬁﬁ) (51b)
ZO
with
p= \/a)ZLC - joLG = \/a)z,ug— joou = o\ ue |1— | a)ir , Ref>0 (52)
wl
ZO = 7
Applying the boundary conditions we obtain:

V(@) =V, @7+ e 7

10



elettrotecnica- appunti gratis ingegneria - www.riccardogalletti.com/appunti_gratis/

"z, (e e (53b)

Now, we want to study the limiting equations in the three cases mentioned above.

CASE A: i<<i<<i

Te Tem Tm
In this case, assuming a relatively high frequency, we have that the equations to be solved are the
EQS ones, obtained neglecting the right hand side of (43a):

E (54)
_dz (54b)
_oH =J+ joD
dz
From (544) we have that
E(2)=E, (55)
i.e. the electric field isindependent of z, while from (54b) it results:
H _ _ _ 56
—(?j—l_zl=(a+ja)g)E0 = H@=-z(c+jos)E, (56)
In order to find out an equivalent circuit, we observe that voltage and are:
V, =—aE; =V, (57a)
o = (57b)
Iy =H(z=-)w=lw(c+ joe)E,
Finally, the ratio between current and voltage is:
T, i (58)
Yg::g:|W(6+Jwg)=|W0-+ja)lwg=G|+ja)C|
V a a a

g
where G and C are the per unit length conductance and the capacitance of the system as defined by
(48). Hence, the equivalent circuit is depicted in Fig.2.

r =0
g
o> <+—0
ng ——jecl § g T—
e
® | ]

Fig. 2

In Fig. 3 we report the behaviours of the frequency response of the circuit of Fig. 2, in terms of
current, as compared with the true response given by (53b) with z=-I. The parameters used are:
a=1cm, w=10cm, |=1m, e=¢o, u=po. The conductivity o has been varied in order to get different
ratio tem/te. We can observe that when it results ten/te << 1 then the equivalent circuit of fig. 2
provides the correct answer, consistently with the condition assumed to derive this model.

11
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Fig. 3: Frequency responses

CASE B: i<<i<<i

Tm Tem Te

In this case, assuming a relatively high frequency, we have that the equations to be solved are the
MQS ones, obtained neglecting the displ acement current:

_ 59
d_E =—jwB (59a)
dz
dq - (59b)
=]
dz
Combining equations (59) with the congtitutive relations, we get
d?H (60)
-y"H =0
iz 7
where
_@+p) 5 |2 (61)
5 0)ley

and Jis the penetration depth.
The solution of (60) can be expressed as:

H@=He”+He& = I@@=wHe”+H, &) (62)

13
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and, from (59b):
E@="(He”-He*) = V(i9=-al(A e H.e") (63)

g o

The complex constants H., H. must be determined with the boundary conditions.

In order to get an equivalent circuit, we find out the impedance matrix Z of the two-port element
seen at the two ends. We define:

7 - \?( ) (649)
I( _I) 1(0)=0
_ V(0)
a = T8 - (64b)

where Z»,=2; for symmetry reasons and Z;,=2,, for reciprocity.
In order to find such elements, we impose I(-1) = Ig and 1(0)=0, and evaluate the voltage at the two
ends. We have:

T (65)
H =-H =— i : i
we —-e’
and hence
. er_gr (663)
=1 R E—
e —-e
— - ay e”+¢e”
=1, - (66b)
@ Swo e’ —¢
From (66b) it results:
5 _aye+e’ (67)
T ow el — ¢
5 _ ay 2 (68)
2 owe—¢
Now, we develop (68) in the limit |y| | << 1, us ng the following Taylor series expansions:
e +e X =2+ x%+0(x) (69)

e —e X = 2x+ O(x®)
Hence, we have:
ay2+71*> a ay* a . ya 1 . L (70)
= = + = +jo—I|=—+jo—I
ow 2yl owl 20w owl 2w Gl 2

according to definitions (48), and
Ly 2 _a 1 (70)

25 w21 oWl GI
In the end, the equivalent circuit is the tee one depicted in Fig. 4.
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Of course, in order to make more valid the approximation used to get this equivalent circuit, one
could split the original system into a number of pieces of smaller length, over which the
approximation | 7l | << 1 is more valid. The result would be a cascade of equivalent circuits as the
oneof fig. 4. In Fig. 5 weillustrate the result obtained splitting the original system in two.

&) 1(0)
> b AV o— "M YN <0
B joLl4 \ joLl/4 _ joL /4
V(—')T GI/2 JoLVA ¢ S TV(O)
[ @ L
Fig. 5

In Fig. 6 we report the behaviours of the frequency response of the circuit of Fig. 4 and 5 in terms
of current, as compared with the true response given by (53b) with z=-l. The parameters used are
the same as before. We can observe that when it results z.n/ 7. >> 1 then the equivalent circuit of fig.
5 provides the correct answer, consistently with the condition assumed to derive this model.

We further observe that neither this circuit nor the RC circuit of Fig. 2 can reproduce correctly the
true response of the circuit when 7/ 7. = 1, even for small values of @zen.
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— full
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o
[6;]

& © OO0 60 © 00 0T dCdddd 6 6§

05 1 1 L 1
0 005 01 015 02 025 03 035 04 045 05
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@
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Fig. 6: frequency responces
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In this case, the equations to be solved are the full equations (43), whose solution has already been
determined. However, we are aways in the case in which oten.<<1l = \ Bl | <<1, so that we can
repeat on the solution (53) all the approximations applied in the previous case, and get the tee
equivalent circuit of Fig.7.

() ioL12  joLlz  1(0)
/e A

\7(—|)T joCl 75 G| Tv(o)
{

Fig. 7

Of course, aso in this case we could split the system in two and get the cascade of two circuits like
the one depicted in Fig. 7.

In Fig. 8 we report the behaviours of the frequency response of the circuit obtained with two tee
cells, as compared with the true response given by (53b) with z=-1, and the results obtained with the
previous equivalent circuits. The geometrical parameters used are the same as before. We can
observe that this circuit is able to reproduce correctly the results also when it results te/te = 1, as
expected.

17
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Fig. 8: frequency responses
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