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Introduction 
 

Let us consider the two-conductor transmission line sketched in Figure 3.1a. The line imposes a 

well-defined relation between the terminal voltages and currents, since the solution of transmission 

line equations is unique when, besides the initial conditions, the voltage or the current at each line end 

is imposed. Instead, no solution would be found if one tried to impose more than two variables, for 

example, as well as the voltages at both ends, also the current at one end. Obviously these relations 

depend only on the transmission line equations and not on the elements to which the line is connected.  

As a consequence, the interaction between the transmission line and the rest of the circuit in which 

it is inserted can be analyzed by describing the line through an equivalent two-port, as shown in Figure 

3.1b.  
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Figure 3.1 Two-conductor transmission line as a two-port element 

 

In this Chapter we will derive time-domain equivalent two-ports describing two-conductor 

transmission lines. This will be done for any kind of lines: ideal lines, lossy RLGC lines, lossy lines 

with parameters depending on frequency, lines with space-varying parameters (nonuniform lines). 

The representation of a line as a two-port in time domain is a basic step that can present difficulties. 

The degree of difficulty obviously depends on the nature of the line. The solution may be found 

directly in time domain only when dealing with ideal lines. The most general case of imperfect lines 

will be analyzed by means of Laplace (or Fourier) transforms and convolution theorem, by exploiting 

the assumption to deal with linear and time-invariant lines.  

As we know from the circuit theory, there are six possible explicit representations of two of the 

four terminal variables in terms of the remaining two (e.g., Chua, Desoer and Kuh, 1987): the current-

controlled voltage-controlled, hybrid and transmission representations. However, as well known,   

these input-output descriptions are not suitable when a time-domain analysis has to be carried out 

(e.g., Miano and Maffucci, 2000).  

Other representations are possible, based on the consideration that transmission lines are systems 

with an internal state, hence input-state-output descriptions may be introduced for them. Several 
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input-state-output descriptions are possible, depending on the choice of the state variables. Due to the 

linearity, the propagation along the transmission line can always be represented through the 

superposition of two travelling waves: a forward wave propagating toward the right and a backward 

wave propagating toward the left. As we shall show, the input-state-output description obtained by 

choosing the travelling waves as state variables, has a comprehensible physical meaning and leads to a 

mathematical model that is at the same time elegant, extremely simple and effectively solvable by 

means of numerical recursive algorithms.  

The two-port representing a two-conductor transmission line can be always modeled by a Thévenin 

equivalent circuit of the type shown in Figure 3.2, whatever the nature of the transmission line. The 

behavior of each end of the transmission line is described through a linear time-invariant one-port 

connected in series with a linear controlled voltage source. The choice of the traveling waves as state 

variables yields two fundamental properties that make particularly useful this representation: 

a) the impedance at each port is the driving-impedance when the other port is matched; 

b) the control laws describing the controlled sources are of delayed type. 

Property b), that is a direct consequence of the propagation phenomenon, is of considerable 

importance, since it allows the controlled voltage sources to be treated as independent sources if the 

problem is solved by means of an iterative procedure, as done when using simulators like SPICE.  
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Figure 3.2 Equivalent circuit of Thévenin type of a two-conductor transmission line 

 

To determine the impulse responses characterizing the transmission line as two-port, we have to 

solve the line equations with the proper initial conditions by considering the currents at the line ends 

as if they were known. The degree of difficulty in solving a problem of this kind, obviously, will 

depend on the nature of the line. 

 

3.1 Ideal lines 
 

3.1.1 The d’Alembert Solution of the Line Equations 

 

The equations for ideal two-conductor transmission lines are, (see Chapter 2), 
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where  and are positive constants.  L C
 

The general solution of Eqs. (3.1.1) may be found by operating directly in the time domain. 

Starting from these equations, by derivation and substitution, we obtain the following system of 

uncoupled equations 
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Each of these has the form of a wave equation (e.g., Smirnov, 1964a). By placing 

 

LC
c 1

=  , 
(3.1.3)

 

the general solution of (3.1.2) in d’Alembert form is 

 

)c/xt(v)c/xt(v)t,x(v −−++ α+++α+−= , (3.1.4)

)c/xt(i)c/xt(i)t,x(i −−++ α+++α+−= , (3.1.5)

 

where  and  are arbitrary constants. The functions , ,  and 
 
are arbitrary. Generally 

they can be continuous or indeed generalized functions in the sense of the theory of distributions, for 

example, unit step functions, Dirac functions, etc., (e.g., Courant and Hilbert, 1989). 

+α −α +v −v +i −i

The term  represents a traveling voltage wave, which propagates in the positive 

direction of the 

)c/xt(v ++ α+−

x  axis, with constant velocity c, without being distorted. It is the so-called forward 

voltage wave. Similarly,  is a traveling voltage wave that propagates in the 

direction of negative 

)c/x −α++t(v−

x . It is the so-called backward voltage wave. Analogous considerations hold for 

 and i , which are called, respectively, forward current wave and backward voltage wave. +i −

The general solution may be equivalently represented through the superposition of two standing 

waves (e.g., Collin, 1992), but this decomposition is useless for our purposes (e.g., Miano and 

Maffucci, 2000). 

The set of all the possible solutions of Eqs. (3.1.2) is much ampler than the set of the solutions of 

the original system (3.1.1). As (3.1.4) and (3.1.5) are solutions of the wave equations, it is sufficient to 

ensure that they satisfy any of the two equations of the original system. Substituting (3.1.4) and (3.1.5) 

in (3.1.1) we obtain 
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(3.1.6)

where  

C/LRc =  (3.1.7)

 

is the characteristic “resistance” of the line. Finally, substituting (3.1.6) and (3.1.7) in (3.1.5) we 

obtain  

[ ])c/xt(v)c/xt(v
R

)t,x(i
c

−−++ α++−α+−=
1  . (3.1.8)

 

In this way, the general solution of the line equations is represented in terms of forward and backward 

voltage waves only. Clearly we can also represent it through the superposition of forward and 

backward current waves. We need only to use (3.1.6) and (3.1.7). 

Let us consider now a line of finite length d, and let us assume 
 

d−=α=α −+     ,  0  . (3.1.9)
 
As a consequence, at time instant t, ( )tv+  represents the amplitude of the forward voltage wave at left 

end of the line, , and while 0=x ( )tv−  represents the amplitude of the backward voltage wave at right 

end, . The time necessary for a wave leaving one end of the line to reach the other end is the 

one-way transit time 

dx =

 
cdT /=

  
(3.1.10)

 
The amplitudes of these waves are determined by imposing the initial distribution of the voltage and 

current along the line, that is, the initial conditions  

 

( ) (xit,xi 00 == ) ( )
   

( )xvt,xv 00 ==
    

for  dx ≤≤0 ,

 

(3.1.11)

 

and the boundary conditions, that are imposed by the circuital elements whom the line is connected to.  

It can be easily shown that there is only one solution of the two-conductor transmission line 

equations compatible with assigned initial conditions and boundary values at each line end for the 

voltage or current (Miano and Maffucci, 2000). However, in general, the values of the voltage and 

current at line ends are not known, but are themselves unknowns of the problem: they depend on the 

actual network in which the line lies. The forward wave and the backward one interact mutually only 

through the circuits connected to the line.  
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3.1.2 Input-State-Output Description and the Equivalent Circuits of Thévenin and Norton Type 

 

The voltages and currents at line ends are related to the voltage and current distributions along the 

line through the relations (see Figure 3.1 for the reference directions) 

 

( ) ( )t,xvtv 01 == ,  ( ) ( )t,xiti 01 ==  ,

 ,  

(3.1.12)

( ) ( )t,dxvtv ==2 ( ) ( )t,dxiti =−=2  . (3.1.13)

 
To determine the relations between the variables , , , and  imposed by the transmission line 

we first impose the initial conditions along the line, and then particularize the solution of the line 

equations at the line ends. The general solution of the line equations is 

1v 2v 1i 2i

 

)/()/(),( Tcxtvcxtvtxv −++−= −+  , (3.1.14)

[ ])/()/(1),( Tcxtvcxtv
R

txi
c

−+−−= −+  , (3.1.15)

 

where T  is given by (3.1.10).  

The voltage and current distributions along the line are completely identified by the functions 

 and v , and vice versa, hence these functions completely specify the state of the line. We 

shall consider them as state variables of the line

)(tv+ )(t−

1. 

The initial conditions fix the state of the line  and  in the time interval . By placing  +v −v ),0( T

 

( ) ( )[ ] ( )[ ]{ } TttTciRtTcvtv c ≤≤−+−=+ 0           
2
1

000 , 
(3.1.16)

( ) ( ) ( ){ } TtctiRctvtv c ≤≤−=− 0                             
2
1

000 , 
(3.1.17)

 
and imposing that expressions (3.1.14) and (3.1.15) satisfy the initial conditions (3.1.16) and (3.1.17), 

we obtain 

( ) ( )tvtv ++ = 0  and ( ) (tvt −− = 0 )v  for   Tt ≤≤0  . (3.1.18)

 

The state of the line for t  depends on the values of the voltage and current at the line ends. T>

                                                           
1 It is easy to verify that the per-unit-length energy  associated to the electromagnetic field along the guiding 

structure is 

emw

( ) [ ] [ ]2222 )/()(2/2/, TcxtvCtvCCvLitxwem −++=+= −+ / cx−  , while the electrical power 

absorbed by an ideal line may be expressed as  [ ] [ ] [ ] [ ] cRtvtvT /)()()
222


−− −+tvTtvvi ()(

2
211 

 +++= −+vi2+   
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Specifying expressions (3.1.14) and (3.1.15) at end 0=x , we obtain relations 

  

( ) ( ) ( )Ttvtvtv −+= −+
1   (3.1.19)

( ) ( ) ( )TtvtvtiRc −−= −+
1   (3.1.20)

 

whereas specifying them at end , we obtain relations dx =

 

( ) ( ) ( )tvTtvtv −+ +−=2  , (3.1.21)

( ) ( ) ( )tvTtvtiRc
−+ −−=− 2  . (3.1.22)

 

Subtracting (3.1.19) and (3.1.20) termwise, and summing (3.1.21) and (3.1.22), termwise, we have, 

respectively, for t : T>

 

( ) ( ) ( )TtvtiRtv c −=− −211  , (3.1.23)

( ) ( ) ( )TtvtiRtv c −=− +222  . (3.1.24)

 

If the state of the line were completely known at any t, these equations would completely determine 

the terminal behavior of the line.  

Different formulations of the equations governing the state dynamics for  are possible. From 

Eqs. (3.1.19) and (3.1.21) we immediately obtain 

Tt >

 
( ) ( ) ( )Ttvtvtv −−= −+

1  for t , T> (3.1.25)

( ) ( ) ( )Ttvtvtv −−= +−
2  for t , T> (3.1.26)

 
whereas from Eqs. (3.1.20) and (3.1.22) we immediately obtain 
 

( ) ( ) ( )TtvtiRtv c −+= −+
1  for t , T> (3.1.27)

( ) ( ) ( )TtvtiRtv c −+= +−
2  for t . T> (3.1.28)

 
Instead, summing (3.1.19) and (3.1.20) and subtracting (3.1.21) and (3.1.22) we have:  
 

( ) ( ) ( )[ ]tiRtvtv c 112
1

+=+  for t , 0>
(3.1.29)

( ) ( ) ( )[ ]tiRtvtv c 222
1

+=−  for t . 0>
(3.1.30)
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Eqs. (3.1.25) and (3.1.26) (or Equation (3.1.27) and (3.1.28)) describe in implicit form the relation 

between the state of the line and the electrical variables at the line ends, whereas Eqs. (3.1.29) and 

(3.1.30) provide the same relation, but in an explicit form. 

 

Remarks 

  

a) From Eqs. (3.1.29) and (3.1.30) we immediately deduce a very important property of ideal two-

conductor transmission lines:  would be equal to zero if the line were connected at the left end 

to a resistor with resistance  - matched line at the left end. The same considerations hold for the 

backward wave if the line is matched at the right end. 

+v

cR

 

b) Eqs. (3.1.23) and (3.1.24), joined to the equations describing the state dynamics, give, in implicit 

form, the relations between the voltages v ,  and the currents i , . Relations (3.1.23) and 

(3.1.24) are two fundamental results of considerable importance. Equation (3.1.23) says that the 

voltage at any time t at end  is equal to the sum of two terms: the term , that would 

be the if the backward voltage wave were equal to zero, and the term , that is the 

voltage that would appear if the line were connected to an open circuit at end . The factor 2 

agrees with the following consideration: when the current at left end is zero, the amplitude of the 

forward wave is equal to that of backward one, and then the voltage is two times the amplitude of 

. If the backward voltage wave  were known for any , the behavior of the line at the 

left end would be entirely determined by (3.1.23). The backward voltage wave is known for 

 from the initial conditions, whereas for  it depends on both what is connected to 

the right and left ends of the line, due to the reflections, and so it is an unknown of the problem. 

Similar considerations can be given to (3.1.24). 

1 2v 1 2i

0=x )(1 tiRc

)( Tt −−

0=x

2v

−v

≤0

−v Tt >

Tt ≤ Tt >

 

c) What is the physical meaning of the equations describing the state dynamics? Let us consider, for 

example, the state variable . Equation (3.1.25) (or (3.1.27)) describes the dynamics of  in an 

implicit form, whereas Eq. (3.1.29) describes the dynamics of  in an explicit form. Eqs. 

(3.1.25), (3.1.27) and (3.1.29) all state the same property: the amplitude of the forward voltage 

wave at time t  and at the left end of the line is equal to the amplitude of the same wave at the right 

end and at the previous time instant t

+v +v

+v

T−  (for any ). This is one of the fundamental 

properties of an ideal two-conductor transmission line. Similar considerations hold for the 

equations of the other state variable . Thus, for  the values of state variables at the time 

instant t only depend on the values of the voltages and/or currents at the line ends, and of the state 

variables themselves at the time instant 

Tt >

−v Tt >

Tt − . 
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d) Two different descriptions of the characteristic relations of the two-port representing the line are 

possible. The set of Eqs. (3.1.23)-(3.1.26) describe the terminal properties of the line, as well as 

the internal state. We call them the internal or input-state-output description of the line. Eqs. 

(3.1.25) and (3.1.26) govern the dynamics of the state, whereas Eqs. (3.1.23) and (3.1.24) describe 

the terminal properties. Therefore we call Eqs. (3.1.25) and (3.1.26) state equations, and Eqs. 

(3.1.23) and (3.1.24) “output equations”. A description in which only the terminal variables are 

involved is possible. In fact by substituting the expression of  given by (3.1.29) into relation 

(3.1.24), and the expression of v  given by (3.1.30) into relation (3.1.23), we eliminate the state 

variables. This formulation of the characteristic relations of the two-port representing the line is 

called the external or input-output description (e.g., Miano and Maffucci, 2000) ♦ 

+v

−

 

It is useful to rewrite Eqs. (3.1.23) and (3.1.24), and state Eqs. (3.1.25) and (3.1.26) in terms of the 

new state variables  and  defined, for , as follows 1w 2w Tt >

 
)(2)(1 Ttvtw −≡ −  , (3.1.31)

)(2)(2 Ttvtw −≡ +  . (3.1.32)

 
Then equations representing the line behavior at the ends can be rewritten as 
   

( ) ( ) ( )twtiRtv c 111 =− , (3.1.33)
( ) ( ) ( )twtiRtv c 222 =−  . (3.1.34)

 
For 0 , the state variables  and  only depends on the initial conditions of the line through Tt ≤≤ 1w 2w

( ) ( )tvtw −= 01 2   for   Tt ≤≤0 , (3.1.35)

( ) ( )tvtw += 02 2   for   Tt ≤≤0 . (3.1.36)

 

For ,  and  are related, respectively, to the values of the voltages v  and v  at the 

time instant t , and to the values of the state variables  and  at the time instant  through 

the equations 

Tt > )(1 tw

T−

)(2 tw 2 1

2w 1w Tt −

 

( ) ( ) ([ ]TtwTtvtw − )−−= 221 2   for  , Tt > (3.1.37)

( ) ( ) ( )[ ]TtwTtvtw −−−= 112 2   for  . Tt > (3.1.38)

 

Eqs. (3.1.37) and (3.1.38) are linear algebraic difference relations with one delay, which have to be 

solved with the initial conditions (3.1.35) and (3.1.36). 

Eqs. (3.1.33) and (3.1.34) suggest the equivalent circuit of Thévenin type shown in Figure 3.1.1a. 

Each port of the line behaves as a linear resistor of resistance  connected in series with a controlled cR
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voltage source. The state Eqs. (3.1.37) and (3.1.38) govern the controlled voltage sources  and . 

This equivalent circuit was proposed for the first time by Branin (Branin, 1967).  
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Figure 3.1.1. Time domain equivalent circuit of an ideal line: Thévenin (a), and Norton type (b)  

 

Figure 3.1.1b shows an equivalent circuit of Norton type. The controlled current sources  and 

 are related to the controlled voltage sources through the relations 

)(1 tj

)(2 tj

 

cR
wj 1

1 −=  , 
cR

wj 2
2 −=  . 

 

(3.1.39)

 

The governing laws of the these sources may be expressed, for t , as follows T>

 

( ) ( ) ( )[ ]TtjTtitj −+−−= 221 2 , (3.1.40)

( ) ( ) ( )[ ]TtjTtitj −+−−= 112 2  
. (3.1.41)

 

For  they are expressed in terms of the initial conditions  Tt ≤≤0

 

( ) ( ) cRtvtj /2 01
−−=          ( ) ( ) ./2 02 cRtvtj +−=  (3.1.42)

 

3.1.3 Lines with Distributed Sources 

 

Until now we have referred to ideal two-conductor transmission lines without distributed sources. 

Here we show how the two-port model obtained in the previous paragraph can be extended to lines 

with distributed sources. The equations for these lines are 

 

.            , ss j
t
vC

x
ie

t
iL

x
v

=
∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

  

(3.1.43)

 

The general solution of these equations may be expressed in the form 
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),()/()/(),( txvTcxtvcxtvtxv p+−++−= −+  , (3.1.44)

[ ] ),()/()/(1),( txiTcxtvcxtv
R

txi p
c

+−+−−= −+  , 
(3.1.45)

 

where and is a particular solution for system (3.1.43). One possible solution is the one 

that satisfies null initial conditions and the boundary conditions of the line as if the line were perfectly 

matched. This ensures particular solutions of short duration. To determine this solution let us use 

Green’s function method. 

),( txv p ),( txi p

Applying the property of sampling of the Dirac function, we rewrite system  (3.1.43) as 

 

( )∫
+

− τττ−δ=
∂
∂

+
∂
∂ t

s dxet
t
iL

x
v

0
),(   , 

(3.1.46)

( )∫
+

− τττ−δ=
∂
∂

+
∂
∂ t

s dxjt
t
vC

x
i

0
),(  . 

(3.1.47)

  
Let us indicate with h  and  the solution of the “auxiliary problem” defined by  );,()( τtxe

v );,()( τtxh e
i

 

( ) ),(
)()(

ττ−δ=
∂

∂
+

∂
∂ xet

t
h

L
x

h
s

e
i

e
v   , 

(3.1.48)

0
)()(

=
∂

∂
+

∂
∂

t
hC

x
h e

v
e

i   , 
(3.1.49)

 
the initial conditions  
 

0);0,()( =τ=txh e
v     for 0);0,()( =τ=txh e

i dx ≤≤0  ,  (3.1.50)

 
and the boundary conditions, for t  0>
 

);,0();,0( )()( τ=−=τ= txhRtxh e
ic

e
v , (3.1.51)

);,();,( )()( τ==τ= tdxhRtdxh e
ic

e
v . (3.1.52)

 
Moreover, let and  be the solution of the equations );,()( τtxh j

v );,()( τtxh j
i

 

0
)()(

=
∂

∂
+

∂
∂

t
h

L
x

h j
i

j
v  , 

(3.1.53)

( ) ( ττ−δ=
∂

∂
+

∂
∂

,
)()(

xjt
t

hC
x

h
s

j
v

j
i )  , 

(3.1.54)

 
with the same initial and boundary conditions for  and . Using the superposition property, a 

particular solution of Eqs. (3.1.43) can be expressed in the form 

)(e
vh )(e

ih
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( ) ( ) ( )[ ] ττ+τ= ∫ d;,;,,
0

)()(t j
v

e
vp txhtxhtxv  , (3.1.55)

( ) ( ) ( )[ ] ττ+τ= ∫ d;,;,,
0

)()(t j
i

e
ip txhtxhtxi  . (3.1.56)

 

This particular solution is, by construction, equal to zero at the initial time and satisfies the perfect 

matching conditions at the line ends. 

Let us begin to resolve the first auxiliary problem. We soon observe that for  the solution 

is identically null and, for t , Eqs. (3.1.47) and (3.1.48) become homogeneous;  and 

 where  is a positive and arbitrarily small number. So if we know the state of the line at 

, we can solve the problem by using d’Alembert’s solution, starting from that time instant. 

−τ≤≤ t0

τ−+τ≥ ε−τ=

ε+τ=τ+

+τ=t

ε

Let us assume that function  is continuous and derivable with respect to x. We integrate 

both the sides of (3.1.47) and (3.1.48) in the time from 

( txes , )
ε−τ=t  to ε+τ=t

t

. Using initial conditions 

and taking the limit 
 
we determine the state of the line at time instant , 0→ε +τ=

 

( ) ),(1;,)( τ=ττ= + xe
L

txh s
e

i  ,      (3.1.57)

( ) 0;,)( =ττ= +txh e
v

 . (3.1.58)

 

Having assumed that  is continuous and derivable in respect to x, the terms 
 
and 

 are limited and therefore do not contribute. Since the solutions we are looking for have to 

be equal to zero for t , we consider d’Alembert solutions of the form  

( txes ,

τ<

) xh e
v ∂∂ /)(

xh e
i ∂∂ /)(

 

( ) ( )[ ] ( ) ( )[ ] ( )τ−ττ−++τ−ττ−−=τ −+ tutcxvtutcxvtxh eee
v ;;;, )()()( ,    (3.1.59)

( ) ( )[ ] ( ) ( )[ ] ( )τ−ττ−+−τ−ττ−−=τ −+ tutcxv
R

tutcxv
R

txh e

c

e

c

e
i ;1;1;, )()()( .  (3.1.60)

 

The unknowns  and  are defined for ( τξ+ ;)(ev ) )( τξ− ;)(ev +∞<ξ<∞− . Imposing conditions (3.1.57) 

and (3.1.58) and boundary conditions (3.1.50) and (3.1.51) we obtain 

 

( ) ( ) ( )




 ≤ξ≤τξ=τξ=τξ− +−

. otherwise                   0

, 0for     ,
2;; )()( de

L
R

vv s
cee   

(3.1.61)
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    Proceeding in the same way, we determine the solution of the other auxiliary problem. Assuming 

that the function  is continuous and derivable in respect to x, one has ( txjs , )
 

( ) 0;,)( =ττ= +txh j
i

 , (3.1.62)

( ) ( )τ=ττ= + ,1;,)( xj
C

txh s
j

v  . (3.1.63)

 
Thus the solution to the second auxiliary problem can be expressed as 
 
   ( ) ( )[ ] ( ) ( )[ ] ( )τ−ττ−++τ−ττ−−=τ −+ tutcxvtutcxvtxh jjj

v ;;;, )()()( ,   (3.1.64)

   ( ) ( )[ ] ( ) ( )[ ] ( )τ−ττ−+−τ−ττ−−=τ −+ tutcxv
R

tutcxv
R

txh j

c

j

c

j
i ;1;1;, )()()( ,   (3.1.65)

 
where the functions  and v  are given by )( jv+ )( j−

 

( ) ( ) ( )




 ≤ξ≤τξ=τξ=τξ −+

. otherwise                   0

, 0for     ,
2
1

;; )()( dj
Cvv sjj  (3.1.66)

 
Specifying (3.1.44) and (3.1.45) at the end 0=x , and subtracting them termwise, we obtain  

 
( ) ( ) ( ) ( )tetwtiRtv c 1111 +=−  , (3.1.67)

 
where has been defined in (3.1.31) and )(1 tw
 

( ) ( ) ( )txiRtxvte pcp ,0,01 =−==  . (3.1.68)

 
Specifying the expressions (3.1.44) and (3.1.45) at end dx = , and summing them termwise we have 
 

( ) ( ) ( ) ( )tetwtiRtv c 2222 +=−  , (3.1.69)

 
where has been defined in (3.1.32) and )(2 tw
 

( ) ( ) ( )tdxiRtdxvte pcp ,,2 =+==  . (3.1.70)

 
Thus it is clear that a line with distributed sources can be represented with the equivalent two-port 

of Thévenin type shown in Figure 3.1.1a, provided that two independent voltage sources are inserted 

that supply voltages  and , in series with the controlled voltage sources  and , 

respectively. The equations governing the dynamics of the state are 

)(1 te )(2 te )(1 tw )(2 tw

 

( ) ( ) ( ) ( )TtdxvTtwTtvtw p −=−−−−= ,2 221  , (3.1.71)

( ) ( ) ( ) ( )TtxvTtwTtvtw p −=−−−−= ,02 112   . (3.1.72)
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3.2. Lossy RLGC lines 
 

This Section deals with lossy two-conductor transmission lines whose parameters are uniform in 

space and independent of frequency (RLGC lines). For such lines the general solution can not be 

expressed in the d’Alembert form because of the dispersion due to the losses. Several methods exist to 

approach this problem (e.g., Smirnov, 1964a; Doetsch, 1974), however, since we are assuming linear 

and time-invariant transmission lines, it is convenient to use the Laplace transform and the 

convolution theorem. In Laplace domain it is easy to solve the line equations, because they become 

ordinary differential equations. Once equivalent two-port representations of the line are obtained in 

Laplace domain, the time domain two-ports are immediately derived by applying the convolution 

theorem. Another feature of this method is the possibility to deal with lossy multiconductor lines with 

parameters depending on the frequency and nonuniform transmission lines, as we shall see later. 

 

3.2.1. Time-Domain Analysis: Dispersion and Heaviside Condition. 

 

In time domain the equations for lossy transmission lines are (see Chapter 2), 
 

Ri
t
iL

x
v

+
∂
∂

=
∂
∂

−  ,               Gv
t
vC

x
i

+
∂
∂

=
∂
∂

−  , (3.2.1)

 

where L, C, R, and G are positive constant parameters. 

The system of the Eqs. (3.2.1) may be transformed into a system of two uncoupled second order 

partial differential equations as we have done for ideal transmission line equations. Starting from the 

Eqs. (3.2.1), by derivation and substitution we obtain the following equation for the voltage 

distribution 

 

( ) 02

2
2

2

2
=αβ+

∂
∂

β+α+
∂

∂
−

∂

∂ v
t
v

x
vc

t
v  , 

(3.2.2)

 
where 
 

  , ,12
C
G

L
R

LC
c =β=α= ; (3.2.3)

 
c would be the propagation velocity of the quasi-TEM mode if the line were lossless,  the inductive 

and  the capacitive damping factors. The current distribution satisfies a similar equation. If we 

introduce a new unknown function  (e.g., Smirnov, 1964a) such that 

α

β

),( txu

 
( ) ( txuetxv t ,, µ−= )  , (3.2.4)

 
and 
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( ) 





 +=βα=µ

C
G

L
R

2
1

2
1 + , (3.2.5)

 
we obtain the simpler equation 
 

uv
x

uc
t
u 2

2

2
2

2

2
=

∂

∂
−

∂

∂  , 
(3.2.6)

 
where  

( ) 





 −=β−α=ν

C
G

L
R

2
1

2
1 . (3.2.7)

 
Note that it is always µ≤ν≤0 . 

Let us look for a harmonic wave solution of Eq. (3.2.6), of the type 
 

( ) ( xtUtxu γ )−ω= cos,  . (3.2.8)

 
The dispersion relation is given by 
 

2222 γ=ν+ω c , (3.2.9)

 
and the phase velocity is 
 

22 ν+ω

ω
=

γ
ω

= cc ph . (3.2.10)

 

Since the phase velocity c  depends upon the frequency, any signal is propagated with distortion. 

Equation (3.2.6) reduces to the dispersionless wave equation (see Section 3.1)) if, and only if, 

ph

 

0=ν , that is, β=α  . (3.2.11)

 

This is the so-called Heaviside condition that Oliver Heaviside discovered in 1887, while studying the 

possibility of distortionless transmission of telegrapher signals. In this case the solution of Eq. (3.2.3) 

is an “undistorted” travelling wave: 

 

( ) ( cxtuetxv t /, mµ−± = )   (3.2.12)

 

Where u is an arbitrary function. The losses only cause a damping of the wave. This result has been 

important for telegraphy. It shows that, given appropriate values for the per-unit-length parameters of 

the line, signals can be transmitted in an undistorted form, even if damped in time. “The 

distortionlessless state forms a simple and natural boundary between two diverse kind of propagation 

of a complicated nature, in each of which there is continuous distortion ... ” (Heaviside, 1893).  
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When , the general solution of Eq. (3.2.6) can not be expressed in the d’Alembert form 

because the phase velocity c  depends upon the frequency. For lines with frequency-dependent 

losses, the attenuation will be different for various frequency components and there will be a further 

variation in the phase velocity. 

0≠ν

ph

 

3.2.2 Solution of the line equations in Laplace domain 

 

Let us consider transmission lines initially at rest. Non-zero initial conditions can be dealt with by 

using equivalent distributed sources along the line, as done for ideal lines in paragraph 3.13 (see 

Miano and Maffucci, 2000). 

In Laplace domain system (3.2.1) reads 

 

),;()();( sxIsZ
dx

sxdV
−=

         
),;()();( sxVsY

dx
sxdI

−=
  

(3.2.13)

 

where V  is the Laplace transform of the voltage distribution, ( sx; ) ( )sxI ;  is the Laplace transform of 

the current distribution and  

 

( ) sLRsZ +=        Y ( ) sCGs +=   (3.2.14)

 

The parameters Z  and Y  are, respectively, the per-unit-length longitudinal impedance and transverse 

admittance of the line in the Laplace domain. 

Starting from Eqs. (3.2.13), by derivation and substitution, we obtain the two uncoupled second 

order differential equations 

 

( ) 0 2
2

2
=− Vsk

dx
Vd

      
( ) 0 2

2

2
=− Isk

dx
Id

  

(3.2.15)

 
where we have introduced the function 1  
  

( ) ( ) ( )sYsZsk =  . 
(3.2.16)

 
By substituting the expressions (3.2.14) in (3.2.16) we obtain  
 

( ) ( )( ) ( ) ( )22 //1 ss
c
ssCGsLRsk ν−µ+=++=  , (3.2.17)

 
 

                                                           
1  The expression ( )ω=− isik  is the so called propagation constant. For ideal transmission lines it is equal to 

. c/ω
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This function is multivalued, having two branches (e.g., Smirnov, 1964b)2.  

As done for ideal lines in Section 3.1, the general solution of line Eqs. (3.2.15) may be written as a 

superposition of two traveling waves  

 

( ) ( ) ( ) ))(())((,
−+ −−−−+ += xxskxxsk esVesVsxV , 

(3.2.18)

( ) ( ) ( ) ))(())((,
−+ −−−−+ += xxskxxsk esIesIsxI , 

(3.2.19)

 

where  and +−+ IVV ,, −I  are arbitrary functions and  and  are arbitrary constants. This form 

highligths forward and backward waves. By choosing , where d is the line length, it 

is easy to realize that V  is the amplitude of the forward voltage wave at left end of the line, 

+x

=+

−x

x− dx =and  0
+ 0=x , 

and while V  represents the amplitude of the backward voltage wave at right end, .  − dx =

The solution may be equivalently expressed as a superposition of any other couple of independent 

solutions. For instance, we may choose the so-called standing waves, namely solutions having the 

form cos[  and  (Collin, 1992; Franceschetti, 1997).  ])( xsk ])([ xsksin

Obviously, the set of all possible solutions for the Eqs. (3.2.15) is much ampler than the set of the 

solutions of the original system (3.2.13). As (3.2.18) and (3.2.19) are solutions of the Eqs. (3.2.15) it is 

necessary to ensure that they satisfy one of the two equations of the original system. For example, 

substituting (3.2.18) in (3.2.13) we obtain 

 
 ( ) ( ) ( ) ( ) 



 −=

−+ −−−−+ ))(())((1; xxskxxsk

c
esVesV

sZ
sxI , (3.2.20)

 
where 
 

( ) ( )
( )sY
sZsZc =

  

(3.2.21)

 

is the characteristic impedance of the line.  

 

 
                                                           
2 The function  has two first-order branch points of regular type along the negative real axis: )(sk LRs /R −=  
and   . When the Heaviside condition C/GsG −= 0=ν  is satisfied, the two branch points coincide and hence 
cancel each other out. We can choose anyone of the two branches of  to determine the general solution of 
our problem. Hereafter we shall consider the branch that has positive real part for , thus in the lossless 
limit . In consequence we must operate in the domain C  obtained by cutting the complex plane 
along the segment belonging to the negative real axis whose ends are  and . This branch of  has 
positive imaginary part for .  

)(sk

cut

Rs

{ } 0Re >s

Gs
csk /+→

)(sk
{ } 0Im >s
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By substituting (3.2.14) in the expression (3.2.21) we obtain for )(sZc
3 

 
 ( ) ( )

( ) s
sR

sCG
sLRsZ cc /1

/1
ν−µ+
ν+µ+

=
+
+

=  , (3.2.22)

 
where  is the characteristic resistance cR
 

C
LRc =

 . 

(3.2.23) 

 
For ideal transmission lines, µ , and the expressions (3.2.17) and (3.2.22) reduce to  

and , respectively. The parameter  would be the characteristic resistance of the 

transmission line if it were without losses. 

0=ν= csk /=

cc RZ = cR

The arbitrary functions V  and V  have to be determined by imposing the boundary 

conditions. In Chapter 1 it is shown that there is only one solution of the transmission line Eqs. 

(3.2.13) compatible with an assigned voltage or current at each line end. Clearly we can also represent 

the solution through  and . It is easy to show that  and . 

)(s+

(I −

)(s−

)(sI + )s cZVI /++ = cZVI /−− −=

 

Remark 

  

e) The general solution (3.2.18) and (3.2.20) holds also in the inductiveless limit  (or in the 

capacitiveless limit ). In this case we have  (or ). The inductiveless limit 

 is very important from the historical point of view. First successful submarine cable to 

transmit telegraph signals between England and France (1851) suggested the possibility of a 

transatlantic cable between Europe and United States. However, since the signal amplitude had 

been observed to fall off sharply with increasing length of the cable, Lord Kelvin (1855) studied 

the electrical transients in long cables assuming that the magnetic effects, described through the 

per-unit-length self-inductance L, were negligible. By using the circuit theory and the Kirchhoff’s 

laws he derived a diffusion equation for the voltage for which Fourier (1822) had given solutions. 

In 1857 Kirchhoff extended the long line theory to include the effects of the self-inductance and 

deduced the finite velocity of propagation of the electrical signals. “However, Kelvin’s theory of 

the cable dominated the thinking of everyone, perhaps because the extended theory looked 

unapproachable to physical interpretation” (Ernst Weber). In 1881 Heaviside reexamined the 

effect of the self-induction and determined what is now known as the “travelling wave” solution.♦ 

0→L

0→C 0→Rs 0→Gs

0→L

                                                                                                                                                                                     
 
3  Function  has two first-order branch points: )(sZ c LRs /R −=  (regular type) and (polar type). However, 
according to the choice made for , in the domain C   function  is single valued and its real part is 
always positive.   

)(sk cut )(sZ c
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3.2.3 Terminal Behavior of the Line in Laplace Domain 

 

By operating as done in Section 3.1 for ideal lines, it is possible to find an equivalent two-port 

representation of the line in Laplace domain, see Figure 3.2.1. 

 

x=0 x

V(x;s)

I(x;s)

x=d

+

−

+

−
V1(s)

1

1’

( s)I1

+

−
V2( s)

2

2’

( s)I2

+

−

1

1’

TL
Two-portV1

+

−

2

2’

V2

I1 I2

 
Figure 3.2.1 Two-conductor transmission line as a two-port element in Laplace domain. 

 

The voltages and the currents at the line ends are related to the voltage and current distributions along 

the line through the relations 

 
( ) ( )sxVsV ;01 == ,  ,

 

( ) ( )sxIsI ;01 == (3.2.24)

( ) ( )sdxVsV ;2 == , ( ) ( )sdxIsI ;2 =−=  . (3.2.25)

 
 Specifying the expressions (3.2.18) and (3.2.20) at the end 0=x  we obtain relations 

 
( ) ( ) ( ) ( )sVsPsVsV −+ +=1  , (3.2.26)

( ) ( ) ( ) ( ) (sVsPsVsIsZc
−+ −=1 )

)

 , (3.2.27)

 
where the global propagation operator  is (sP
 

( ) ( ) ( ) 



 ν−µ+−= 22 //1exp sssTsP  , (3.2.28)

 
and T is the one-way transit time of the quasi-TEM mode 
 

c
dT =  . (3.2.29)

 
Instead, specifying the expressions (3.2.18) and (3.2.20) at the end dx =  we obtain relations 
  

( ) ( ) ( ) ( )sVsVsPsV −+ +=2  , (3.2.30)

( ) ( ) ( ) ( ) ( )sVsVsPsIsZc
−+ −=− 2  . (3.2.31)

 
Subtracting (3.2.26) and (3.2.27), and summing (3.2.30) and (3.2.31),  we have, respectively, 

 
( ) ( ) ( ) ( ) ( )sVsPsIsZsV c

−=− 211  , (3.2.32)

( ) ( ) ( ) ( ) ( )sVsPsIsZsV c
+=− 222  . (3.2.33)
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If the state of the line in the Laplace domain, represented by V  and V , were completely known, 

these equations would completely determine the terminal behavior of the line. Actually, as for the ideal 

two-conductor transmission lines, the voltage waves V  and V  are themselves unknowns (see 

Section 3.1). 

+ −

+ −

As for ideal transmission lines, different formulations of the equations governing the state are 

possible. By using (3.2.26) it is possible to express the amplitude of the outcoming forward wave at 

, V , as a function of the voltage and amplitude of incoming forward wave at the same end. In 

the same way, by using (3.2.30) it is possible to express the amplitude of the outcoming backward 

wave at , V , as a function of the voltage and amplitude of incoming forward wave at the same 

end. Therefore, from Eqs. (3.2.26) and (3.2.30) we immediately obtain 

0=x +

x d= −

 
( ) ( ) ( ) ( )sVsPsVsV −+ −= 1  , (3.2.34)

( ) ( ) ( ) ( )sVsPsVsV +− −= 2  . (3.2.35)

 
Instead, summing (3.2.26) and (3.2.27), termwise, and subtracting  (3.2.30) and (3.2.31), termwise, we 
have 
  

( ) ( ) ( ) ( )sIsZsVsV c 112 +=+  , (3.2.36)

( ) ( ) ( ) ( )sIsZsVsV c 222 +=−  . (3.2.37)

 
The state Equations (3.2.34) and (3.2.35) describe in implicit form the relation between the state of the 

line and the electrical variables at the line ends, whereas the state Equations (3.2.36) and (3.2.37) 

provide the same relation, but in an explicit form. 

The Eqs. (3.2.32) and (3.2.33), joined to the state equations, give, in implicit form, the relations 

between the voltages V , V  and the currents , . In particular substituting the expression of V  

given by (3.2.36) in the relation (3.2.33), and the expression of V  given by (3.2.37) in the relation 

(3.2.32), we obtain two linearly independent equations in terms of the variables V , V ,  and , 

1 2 1I 2I +

−

1 2 1I 2I

 

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 02211 =+−− sIsZsVsPsIsZsV cc
 , (3.2.38)

( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 01122 =+−− sIsZsVsPsIsZsV cc
 . (3.2.39)

 

Remarks 

 

a) The global propagation operator )  defined by (3.2.28) plays an important role: it links the 

amplitude of the forward voltage wave at the line end 

(sP

dx = , , with the one at the line end 

, V . Since the line is uniform, P is also the operator linking the amplitude of the backward 

+PV

0=x +
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voltage wave at the line end , , with the one at the line end , V . For nonuniform 

transmission lines, in general, they are different (see Section 3.4). 

0=x −PV dx =

v

−

)(t+

+PV

−PV

() sV +(2 sP

 

b) We immediately observe from Eq. (3.2.36) that V  would be equal to zero if the line were 

connected at the left end to a one-port with impedance Z  ,  

+

)(sc

( ) ( ) ( )sIsZsV c 11 −=  , (3.2.40)

- perfectly matched line at the left end - and hence its inverse transform  should be zero. 

The same result holds for the backward wave if the line is perfectly matched at the right end,  

 
( ) ( ) ( )sIsZsV c 22 −=  , (3.2.41)

 
In general, the matching conditions (3.2.40) and (3.2.41) are not satisfied. Then a forward wave 

with amplitude V  is generated at the left line end, + 0=x , and propagates toward the other end, 

, where its amplitude is . Likewise, the backward wave excited at dx = dx =  with 

amplitude V  propagates toward the left line end, where its amplitude is .   ♦ −

 

By operating in the Laplace domain, we have found, for the lossy two-conductor lines the same results 

as those we found for the ideal two-conductor lines, see Section 3.1. The system of Eqs. (3.2.32)-

(3.2.35) and the system of Eqs. (3.2.38) and (3.2.39) are two fundamental results of considerable 

importance. They are two different mathematical models describing the two-port representing the line. 

The set of Eqs. (3.2.32)-(3.2.35) describe the internal state of the line, represented by V  and V , as 

well as the terminal properties. It is the internal or imput-state-output description of the line in the 

Laplace domain. Eqs. (3.2.34) and (3.2.35) govern the behavior of the state, whereas Eqs. (3.2.32) and 

(3.2.33) describe the terminal properties. Instead the system of Eqs. (3.2.38) and (3.2.39) describes 

only the terminal property of the line. It is the external or input-output description of the line in the 

Laplace domain.  

+ −

 

3.2.4 Input-state-output description in Laplace domain: Thévenin and Norton equivalent 

circuits 

 

As was done for ideal lines in Section 3.1, since in Eqs. (3.2.32) and (3.2.33) the state of the line 

appears through  and , we rewrite these equations as )()(2 sVsP − )

 
( ) ( ) ( ) ( )sWsIsZsV c 111 =−  , (3.2.42)

( ) ( ) ( ) ( )sWsIsZsV c 222 =−  , (3.2.43)

 
where the state is represented by 
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( ) ( ) ( )sVsPsW −= 21  , (3.2.44)

( ) ( ) ( )sVsPsW += 22  . (3.2.45)

 

Since the functions V , V  are uniquely related to W , W , the latter functions can be regarded as 

state variables, too. Note that, except for the factor 2, W  and W  are, respectively, the 

backward voltage wave amplitude at the end 

+ −
1 2

1 )(s )(2 s

0=x  and the forward voltage wave amplitude at the end 

. From the state Equations (3.2.34) and (3.2.35) we obtain the equations for W  and  W : dx = 1 2

 

( ) ( ) ( ) ( )[ ]sWsVsPsW 221 2 −=  , (3.2.46)

( ) ( ) ( ) ( )[ ]sWsVsPsW 112 2 −=  . (3.2.47)

 

The output equations (3.2.42) and (3.2.43) say that, in Laplace domain, the voltage at each end of the 

line is equal to the sum of two terms: the one is due to the impedance , and the other to a controlled 

voltage source W . If the line were perfectly matched at end 

cZ

dx = , it would behave at 
 
as a one-

port with impedance  equal to . Instead, W  is the voltage that there would be at the end 

 if the line were connected to an open circuit at that end. Similar considerations can be made for 

the other end. In consequence, the behavior of each port of a lossy line may be represented through an 

equivalent Thévenin circuit, see Figure 3.2.2a. The governing laws of the controlled sources are 

nothing but the state equations (3.2.46) and (3.2.47). The Thévenin equivalent circuits of Figure 3.2.2a 

and the governing laws (3.2.46) and (3.2.47) for the voltage controlled sources still hold for lines with 

frequency-dependent parameters (see Section 3.3). 

0=x

cZ 1IZ c 1

0=x

 

J V22

I2I1

V1 J1

1

1’

2

2’
(a)                                                                                (b)

W1 W2
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V1

+

−

1

1’

+−

2’

V2

I2 2

+−

Z c Zc

Zc Zc

+

− −

+ +

−

 
Figure 3.2.2 Laplace domain equivalent circuits for a uniform lossy two-conductor line: 

Thevénin (a) and Norton (b) type 

 

 

Figure 3.2.2b shows the line equivalent circuit of Norton type in the Laplace domain. The controlled 

current sources  and  are related to the controlled voltage sources of the circuit 3.2.2a 

through 

)(1 sJ )(2 sJ
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cZ
WJ 1

1 −=   and  
cZ

WJ 2
2 −=  . (3.2.48)

 
The control laws of these sources may be obtained from the state equations  (3.2.46) and (3.2.47). We 
obtain 
 

( ) ( ) ( ) ( )[ ]sJsIsPsJ 221 2 +−=  , (3.2.49)

( ) ( ) ( ) ( )[ ]sJsIsPsJ 112 2 +−=  . (3.2.50)

 
Both the descriptions are completely characterized by the two functions  and , which 

we call the describing functions of the two-port representing the line behavior in the Laplace domain. 

Next paragraph will be devoted to the study of the properties of such functions. 

)(sZc )(sP

 

3.2.5 Properties of the describing functions  and P(s).  )(sZc

 

As shown in previous paragraph, the characteristic impedance  is the impedance seen at one 

end of the line when the other end is matched. This is the case of a semi-infinite line (see Figure 

3.2.3), that is naturally matched. 

)(sZc

 

x=0 x

+

−
v(x;t)

i(x;t)
1

1’

+

−
v1( t )i1(t )

 
Figure 3.2.3 Semi-infinite line fed by an independent current source. 

 

For such a line, placing 
 

),0()(1 sxVsV == and ),0()(1 sxIsI == , (3.2.51)
 
it is evident that  
 

( ) ( ) ( )sIsZsV c 11 =  . (3.2.52)

 
By applying the convolution theorem, relation (3.2.52), in the time domain, becomes   
 

( ) ( )( )tiztv c 11 ∗=  . (3.2.53)

 

where  is the inverse Laplace transform of . The function  is the current-controlled 

impulse response of the one-port representing the line behavior at the end . 

)(tzc )(sZc )(tzc

=x 0
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Since in the limit of lossless transmission line , it is useful to separate this term from 

that which takes into account the effects of the losses: 

cc RsZ →)(

 
( ) ( ) ( )sZsZsZ crcpc +=  , (3.2.54)

 
where the principal part )

 
and the remainder )

 
are given by  (sZcp (sZcr

 
( ) ccp RsZ =  (3.2.55)

( ) ( )
( ) 










−

ν−µ+
ν+µ+

= 1
/1
/1
s
sRsZ ccr

 
(3.2.56)

 
The impulse response  is given by )(tzc

 
( ) ( ) ( )tztRtz crcc +δ=  , (3.2.57)

 
where  is the inverse Laplace transform of  and is given by (Doetsch, 1970) )(tzcr )(sZcr
 

( ) ( ) ( )[ ] ( )tutItIeRtz t
ccr ν+νν= µ−

10 , (3.2.58)

  
where and  are the modified Bessel functions of order 0 and 1, respectively, (e.g., 

Abramowitz and Stegun, 1972). Since  is an even function and 

( )tI ν0 ( tI ν1 )
( )yI0 ( )yI1

)(t

0

 an odd function for real y, 

the term  depends on the sign of . Two terms form the impulse response : a Dirac pulse 

acting at t  and the bounded piecewise continuous function  given by (3.2.58), which is 

equal to zero for . For ideal lines or lines in Heaviside condition 

)(tzcr

0=

ν )(tzc

zcr

0<t =ν , hence .  0) =(tzcr

The remainder  has the following asymptotic behavior )(sZcr

 

( ) ( 2/1 s
s

RsZ ccr O+
ν

≈ ) for ∞→s , (3.2.59)

 
whereas the principal part  is a constant. The inverse Laplace transform of  is a bounded 

piecewise continuous function because Z  goes to zero as 1  for 

cpZ crZ

cr s/ ∞→s , whereas the inverse 

Laplace transform of the principal part is a Dirac function. Therefore, (3.2.54) is an asymptotic 

expression of )(sZc
4  

By substituting expression (3.2.57) in convolution relation (3.2.53) we obtain 

 

( ) ( ) ( )( )tiztiRtv crc 111 ∗+=  . (3.2.60)

                                                           
4 “An asymptotic expression for a function is an expression as the sum of a simpler function and of a remainder 
that tends to zero at infinity, or (more generally) which tends to zero after multiplication by some power.” 
(Lighthill, 1958). 
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The first term is the voltage we should have at the end 0=x  if the line were lossless or the Heaviside 

condition were satisfied. The other term describes the wake produced by the dispersion due to the 

losses. 

The value of  at   is . The asymptotic behavior of  for crz += 0t cRtzcr ν== + )0( crz ∞→t , is 

 

( )
t

eR
tz

tCG
c

cr
νπ

ν
≈

− )/(

2
2   for ν  , 0>

(3.2.61)

( )
( ) 2/3

)/(

22 t

eRtz
tLR

c
cr

νπ

ν
≈

−   for ν  . 0<

(3.2.62)

 

If ν≠µ  the function  goes exponentially to zero for crz ∞→t  with the time constant ( )ν−µ/1 . 

Instead, in the limit case ν=µ ,  goes more slowly to zero for crz ∞→t : as tν/1  for  and as 0>ν

( ) 2/3/1 tν  for ν . Figure 3.2.4 shows the qualitative behavior of the function  for different 

values of  

0<

/ .

crz

νµ

Figure 3.2.4. Qualitative behavior of the function  for different values of )(tzcr νµ  /

t

µ = ν

µ = 3ν

µ = -ν

µ = -3ν

z  (t)cr

 

Remark 
 

The asymptotic behavior of  for )(tzcr ∞→t  depends only on the branch point of  nearer 

to the imaginary axis.  

)(sZc
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For  we have , so the branch point of polar type 0>ν CGLR // > CG /−  is that nearer to the 

imaginary axis, and hence the factor CGs // +1  determines completely the asymptotic 

behavior of . By using the inverse Laplace transform of )(tzcr s/1  we immediately obtain that 

the inverse Laplace transform of CGs // +1  is the function tt π/)e .  CG− /(

 For =ν  the two branch points coincide, and hence the function  becomes a constant. 

Instead for  we have , so the branch point of regular type 

0

ν

)(sZc

0< CGLR // < LR /−  is that nearer 

to the imaginary axis, hence the factor LRs /+  determines completely the asymptotic behavior 

of . By using the inverse Laplace transform of )(tzcr s  and the shifting property we realize that 

the inverse Laplace transform of LRs /+  asymptotically behaves as e   

where  is the gamma function (e.g., Abramowitz and Stegun, 1972). ♦ 

( )[ ]2/32/1 t−Γ)/( /tLR−

( )yΓ

 

Figure 3.2.5 shows the qualitative behavior of the voltage dynamics at the end 0=x , when i  is a 

rectangular pulse of time length 

)(1 t

T  and amplitude I. 

 1
0

1v (t)

µ = ν

t/T

µ  = 5e8

µ = 3ν

µ = -3ν

µ = -ν

Figure 3.2.5 Voltage wave form at the end 0=x  of the semi-infinite line  

fed by is a rectangular pulse, for different values of νµ /  

 
As previously shown, the global propagation operator )  defined by (3.2.28) relates the 

amplitude of the forward (backward) voltage wave at  

(sP

dx = ( 0=x ) to the one at the line end 0=x
 

( ). It is useful to rewrite the propagation operator  as follows dx = )(sP
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( ) ( ) ( )sPesP Ts )µ+−=  , (3.2.63)

 
where the function  is given by )(ˆ sP
 

( ) ( )






































+µ
ν

−−µ+=
2

11expˆ
s

sTsP .  (3.2.64)

 
The factor ( )[ Ts ]µ+−exp , which represents a damped ideal delay operator with delay T, oscillates for 

∞→s , whereas the factor  tends to 1. Therefore, the function  has the following 
asymptotic expression 

)(ˆ sP )(ˆ sP

 
( ) ( )sPsP r

))
+=1 , (3.2.65)

 
where the remainder )  has the following asymptotic behavior (ˆ sPr
 

( ) ( 2
2

/11
2

s
s

TsPr O+
µ+

ν
=

) )  for ∞→s . (3.2.66)

 
The first term of , that is 1, is that which we should have if the line were lossless or if the 

Heaviside condition were satisfied. The other term, , describes the wake produced by the 

temporal dispersion due to the losses. The operator P would coincide with the ideal delay operator 

 if the line were lossless. For lossy lines, the operator P reduces to the product of the ideal 

delay operator 

)(ˆ sP

)(ˆ sPr

( sT−exp )
( )sT−exp  with the decaying factor ( )Tµ−exp  when the Heaviside condition is 

satisfied. When ν  besides the ideal delay and the decaying factor, there is also the factor 0≠ ( )rP
)

+1 . 

The inverse Laplace transform of P may be expressed as: 

 
( ) ( ) ( )TtpTtetp r

T −+−δ= µ− ,  (3.2.67)

 
where the function 
 

( )
( )

( )
( )tu

TTt

TTtI
eTtp Tt

r
22

22
1

)(

−+





 −+ν

ν= +µ−  
 

(3.2.68)

 
is the inverse Laplace transform of the function ( ) ( )sPesP rr

T )µ−=

(ˆ sPr

. Therefore, the function  is 

equal to zero for . This is the manifestation of the delay introduced by the finite value of the 

propagation velocity. According to the asymptotic behavior of  given by (3.2.66), the function 

 is a bounded, piecewise continuous function. Since 

)(tp

Tt <

)

)(tpr ( )yI1  is an odd function for real y, the 

function  does not depend on the sign of )(tpr ν . 

elettrotecnica- appunti gratis ingegneria -        www.riccardogalletti.com/appunti_gratis/



Notes on Circuital Representation of Two-Conductor Transmission Lines                                                           28

The first term on the right hand side of the expression (3.2.67) is the impulse response  that we 

should have if the Heaviside condition were satisfied. The remainder  describes the wake produced 

by the dispersion due to the losses. Figures 3.2.6 show the qualitative behavior of the function  

for two values of T. 

)(tp

rp

)(tpr

 The value of  at time t  is . For )(tpr
+= 0 2/)0( 2ν=+ Tpr ∞→t  the function  behaves as )(tpr

( )
( )

( ) 2/3

2

2 t

eTtp
t

r
νπ

ν
≈

ν−µ−
 . 

(3.2.69)

 

Thus  vanishes exponentially for )(tpr ∞→t  with the time constant ( )ν−µ/1  if ν≠µ . Instead, it 

vanishes more slowly if ν=µ , as ( ) 2/3tν/1 . Remember that for 0>ν  we have CG /=ν−µ  and 

for ν  we have 0< LR /=ν−µ .  

 

p
r
(t)

t(a)

    Tν2 / 2

 

p
r

(t)

t(b)  

Figure 3.2.6 Qualitative behavior of the function , )(tpr

for ∗= TT  (a),  and  (b), with ∗= TT 10 ν=µ  

 

Remark 
 

As with , the asymptotic behavior of  for )(tzcr )(tpr ∞→t  depends only on the branch point of 

 that is nearer to the imaginary axis. Unlike the branch points of , both the branch 

points of  are regular. 

)(sP )(sZc

)(sP

For  we have , the branch point 0>ν CGLR // > CG /−  is that nearer to the imaginary axis, 

and hence the factor CGs /+  determines completely the asymptotic behavior of . By )(tpr
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using the inverse Laplace transform of s  we immediately obtain that the inverse Laplace 

transform  behaves asymptotically as ( )[ ]2/3( 2/1/ tG −Γ−

LR /

)/ tCe . 

−

s

( ) ( )[ ] ττ−τ dw2

( ) ( )[ ] ττ−τ dw1

)t

( )Tt −,0

For  the two branch points coincide, and hence, they disappear. Instead for ν  we have 

, to the branch point of regular type 

0=ν

GL /<

0<

CR /  is that nearer to the imaginary axis, and 

hence the factor LRs /+  determines completely the asymptotic behavior of . By using 

the inverse Laplace transform of 

)(trp

 and the linear transformation property we immediately 

obtain that the inverse Laplace transform behaves asymptotically as ( )[ ]2/3)/( 2 te tLR− /1−Γ/ , 

where  is the gamma function (e.g., Abramowitz and Stegun, 1972). ♦ (yΓ )
 

3.2.6 Input-State-Output Descriptions in Time Domain: Thévenin and Norton Equivalent 

Circuits. 

 

The equivalent two-ports representing a lossy two-conductor line in time domain may are shown in 

Figure 3.2.7. The time domain output Equations of the two-port are obtained from the Eqs. (3.2.42) 

and (3.2.43), respectively 
 

( ) ( )( ) (twtiztv c 111 =∗− )  , (3.2.70)

( ) ( )( ) (twtiztv c 222 =∗− )  . (3.2.71)

 
The voltages  and  only depend on the initial conditions for 1w 2w Tt ≤≤0 : 0)()( 21 == twtw

T>

 for 

, because we are considering transmission lines initially at rest. For t , they are both 

unknowns of the problem and are related to the voltage at the line ends through the control laws 

Tt ≤≤0

 
( ) ( ){ } twvptw 221 2 −∗= ( )

( )

 , (3.2.72)

( ) ( ){ } twvptw 112 2 −∗=  . (3.2.73)

 
Since  for ( ) 0=tp Tt ≤≤0 ,  Eqs. (3.2.72) and (3.2.73) reduce to 
 

( ) ( ) ( )τ−−= ∫
−

vtpTtutw
Tt

0 21 2  , (3.2.74)

( ) ( ) ( )τ−−= ∫
−

vtpTtutw
Tt

0 12 2  . (3.2.75)

 
 

Therefore the voltages  and w  depend, respectively, only on the values assumed by  

and  and by v  and  in the time interval 

)(1 tw

2

(2 1w

2w 1 v . Consequently, if the solution for iTt ≤≤0 , 

with i ,  is known, both  and  are known for .... ,2 ,1= 1w 2w ( )Tit 1iT +≤≤ . 
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This fact allows the controlled sources  and  to be treated as “independent” sources if the 

problem is resolved by means of iterative procedures. 

1w 2w

 

 

w
1 w2v1

+

−

1

1’

+−

2’

v2

i2 2

+−

R ci1 R c
zcr(t) zcr(t)
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(b)

v1

+

−

1

1’ 2’

v2

i2 2

Rc

i1

R c
 j21

D

D D
+

 j
ycr(t)

D

ycr(t)

 
Figure 3.2.7 Time domain line equivalent circuit of Thévenin (a)  

and Norton type (b), for a uniform lossy two-conductor line 

 

Unlike the lossless lines, due to the wake caused by the dispersion,  depends on the whole 

history of functions  and  in the interval 

)(1 tw

2w 2v ( )Tt −,0  and  depends on the whole history of 

functions  and  in the interval  

)(2 tw

1w 1v ( )Tt −,0 .

By substituting (3.2.60) into Eqs. (3.2.70) and (3.2.71), we obtain the linear convolution Equations 

 

( ) ( ) { }( ) ( )twtiztiRtv crc 1111 =∗−−  , (3.2.76)

( ) ( ) { }( ) ( )twtiztiRtv crc 2222 =∗−−  . (3.2.77)

 

These relations suggest the time domain equivalent circuit of Thévenin type shown in Figure 3.2.7a. 

The dynamic one-port is characterised by the current based impulse response . It takes into 

account the wake due to the dispersion. When the Heaviside condition is satisfied we have 

)(tzcr

0)( =tzcr , 

and the Thévenin equivalent circuit of  Figure 3.2.7a reduces to that of Figure 3.1.1a, relevant to the 

lossless lines.  

 By substituting the expression of p given by (3.2.67) in the Eqs.  (3.2.74) and (3.2.75), for the 

governing laws of the state we obtain the linear difference-convolution Equations 

 

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] ,22
0 22221 ττ−ττ−−+−−−−= ∫

−µ− dwvTtpTtueTtwTtvtw
Tt

r
T

  
(3.2.78)

( ) ( ) ( )[ ] ( ) ( ) ( ) ( )[ ] .22
0 11112 ττ−ττ−−+−−−−= ∫

−µ− dwvTtpTtueTtwTtvtw
Tt

r
T

 
(3.2.79)

elettrotecnica- appunti gratis ingegneria -        www.riccardogalletti.com/appunti_gratis/



Notes on Circuital Representation of Two-Conductor Transmission Lines                                                           31

 

When the Heaviside condition is satisfied, we have 0)( =tpr , and the state Equations reduce to the 

linear difference Equations 

 

( ) ( ) ( )[ ] ( )TtueTtwTtvtw T −−−−= µ−
221 2  ,  (3.2.80)

( ) ( ) ( )[ ] ( )TtueTtwTtvtw T −−−−= µ−
112 2  . (3.2.81)

 

These Equations, except for the damping factor )exp( Tµ− , coincide with the state Equations obtained 

for the lossless lines, (see Section 3.1). Note that Eqs (3.2.70)-(3.2.73) still hold for lines with 

frequency-dependent parameters (see Section 3.3). 

 

Figure 3.2.7b shows the time domain equivalent two-port of Norton type. In this circuit the 

dynamic one-port  is characterised by the voltage based impulse response . It is the bounded 

part of the inverse Laplace transform of the characteristic line admittance operator 

( )tycr

 

( ) ( )
( ) s

s
RsLR

sCGsY
c

c /1
/11

ν+µ+
ν−µ+

=
+
+

=  . 
(3.2.82)

 

The admittance Y  can be rewritten as follows c

 

( ) ( )sY
R

sY cr
c

c +=
1  , (3.2.83)

 

where the function Y  is given by cr

 

( ) ( )
( ) 










−

ν+µ+
ν−µ+

= 1
/1
/11
s
s

R
sY

c
cr

  
(3.2.84)

 

and has the property 

 

( ) ( 2/11 s
sR

sY
c

cr O+
ν

−≈ ) for ∞→s  . (3.2.85)

 

 The inverse Laplace transform of ( )scY  is given by  
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( ) ( ) ( )tyt
R

ty cr
c

c +δ=
1 , (3.2.86)

 

where  is the inverse Laplace transform of  Y  and it is given by (see Doetsch, 1970) ( )tycr cr

 

( ) ( ) ( )[ ] ( )tutte
R

ty t

c
cr ν−ν

ν
= µ−

01 II . 
(3.2.87)

  

Since  is an even function and  is an odd function (on the real axis), the term  depends on 

the sign of the parameter ν . Because of the asymptotic behavior (3.2.85), the inverse Laplace 

transform of  is a bounded piece wise continuous function. Figures 3.2.8 show the qualitative 

behavior of the function  for different values of 

0I 1I ( )tycr

)(sYcr

(tcr )y νµ / . The governing laws of the controlled 

current sources are 

 

( ) ( ) ( )[ ] ( ) ( ){ }( )TtjipTtueTtjTtitj r
T −+−∗+−−+−−= µ−

22221 22  , (3.2.88)

( ) ( ) ( )[ ] ( ) ( ){ }( )TtjipTtueTtjTtitj r
T −+−∗+−−+−−= µ−

11112 22  . (3.2.89)

t

y  (t)cr

µ = 3ν

µ = -ν

µ = -3ν

µ = ν

 

Figure 3.2.8 Qualitative behavior of the function ( )tycr  for different values of  νµ /
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